客服热线:151-0330-0858

缸内直喷技术的优缺点,你了解多少?


缸内直喷技术,是指将喷油嘴设置在进排气门之间,高压燃油直接注入燃烧室平顺高效地燃烧,缸内直喷所宣扬的是通过均匀燃烧和分层燃烧实现了高负荷、尤其是低负荷下的燃油消耗降低,动力还有很大提升的一种技术。在对能源和环保要求日趋严格的今天,即使是多点燃油喷射这样的技术也不能满足人们的要求了,于是更为精确的燃油喷射技术诞生,那就是缸内直喷技术。缸内直喷就是将燃油喷嘴安装于气缸内,直接将燃油喷入气缸内与进气混合。喷射压力也进一步提高,使燃油雾化更加细致,真正实现了精准地按比例控制喷油并与进气混合,并且消除了缸外喷射的缺点。同时,喷嘴位置、喷雾形状、进气气流控制,以及活塞顶形状等特别的设计,使油气能够在整个气缸内充分、均匀的混合,从而使燃油充分燃烧,能量转化效率更高。

缸内直喷技术的优缺点
一、优点
1、大负荷或全负荷工况时,缸内直喷发动机在进气行程中将燃油喷入燃烧室,由于油束的移动速度小于活塞的下行速度,使得油束周围的压力较低,燃油迅速扩散蒸发,进而形成均质燃烧混合气。另外,燃油蒸发吸收热量使缸内温度降低,增强了抗爆震性能。因此缸内直喷发动机可以用较高的压缩比,提高了发动机的热效率,一般可提高至 11~14。另外由于缸内温度降低,提高了充量系数,可发出较大的功率。当发动机在低负荷运行时,在压缩冲程时刻进行燃油喷射,利用缸内滚流的运动促进油气混合,最后在火花塞电极附近形成适宜点火的油气,并且油气浓度在整个燃烧室内呈现梯度分布,可实现较大的空燃比,从而提高发动机的经济性。同时,分层燃烧模式使燃烧发生在燃烧室的中心区域,燃烧被周边的空气隔绝,降低了热量损失,进一步降低了燃油消耗率。
2、缸内直喷发动机在中、小负荷工况时采用分层燃烧模式,燃油浓度梯度呈现梯度分布,即在缸壁附近分布的大部分是空气,有效地防止了热量传递给缸体水套,提高了燃烧的热效率。
3、进气道喷射发动机在冷起动过程中,缸内温度低,油气蒸发不完全,致使实际喷油量远远超过了按理论空燃比计算得到的喷油量,而且在冷起动时易出现失火或不完全燃烧现象,使 HC排放增加。相反,缸内直喷技术发动机可以精确的控制每个循环的空气与燃油比例,结合分层燃烧直接起动技术,可以降低冷起动时的 HC 排放,瞬态响应好。
4、缸内直喷发动机采用质调节,根据各缸的实际需求进行燃油喷射,可减少各缸之间的差异,提高各缸均匀性,一般与进气道喷射汽油机相比缸内直喷发动机的各缸均匀性可以控制在 3%以内。

二、缺点
尽管缸内直喷技术有上述优点,但也存在缺陷,其中最大的问题就是易积碳。由于缸内直喷汽油发动机的燃料与空气混合的时间要比歧管喷射短得多,可燃混合气混合不够均匀,缺氧的燃油会发生裂解、脱氢,造成燃烧不充分,最后生成碳烟微粒;而歧管喷射混合时间长,可燃混合气在点燃之前,混合已经比较充分,缺氧的燃油部分少,燃烧充分,碳烟微粒相对较少。除此之外,直喷由于是直接用高压喷油嘴在气缸内喷射汽油,会使得部分燃油喷射在汽缸壁、活塞顶部、缸盖等部分,被活塞上下做功的过程中带起的润滑油膜吸附,造成燃烧不充分。积碳的危害很多,坚硬的积碳沉积在发动机燃烧室,会划伤发动机金属部件,使发动机磨损严重。沉积在活塞槽内的积碳还会影响活塞环向外的弹性张力,造成缸压衰退,窜气严重。沉积在润滑系统的积碳还会造成润滑不良,油耗增大,功率下降,严重时会堵塞油道,造成拉缸等严重后果。因此保养成本高。

缸内直喷技术预防积碳方法
1、使用清洁的汽油;汽油越清洁其胶物质和石蜡就越少,通过添加汽油清洁剂也是一种可取的做法。
2、培养良好的驾驶习惯;尽量不要长时间低转速行驶,不要低转速换挡,在这种情况下会发生汽油燃烧不充分,容易产生积碳。
3、定期清洁保养;按时做足常规保养,定期限清洗进气系统的气道、气门、油路等容易形成积碳的部位。
4、定期拉拉高速,让发动机高速运转自行清除轻微积碳。


缸内直喷技术原理
1、这一技术是用来改善传统汽油发动机供油方式的不足而研制的缸内直接喷射技术,先进的直喷式汽油发动机采用类似于柴油发动机的供油技术,通过一个活塞泵提供所需的100bar以上的压力,将汽油提供给位于汽缸内的电磁喷射器。然后通过电脑控制喷射器将燃料在最恰当的时间直接注入燃烧室,其控制的精确度接近毫秒,其关键是考虑喷射器的安装,必须在汽缸上部留给其一定的空间。由于汽缸顶部已经布置了火花塞和多个气门,已经相当紧凑,所以将其布置在靠近进气门侧。由于喷射器的加入导致了对设计和制造的要求都相当的高,如果布置不合理、制造精度达不到要求导致刚度不足甚至漏气只能得不偿失。另外FSI引擎对燃油品质的要求也比较高,目前国内的油品状况可能很难达到FSI引擎的要求,所以部分装配了FSI的进口高尔夫出现了发动机的水土不服。
2、此外,FSI技术采用了两种不同的注油模式,即分层注油和均匀注油模式。
3、发动机低速或中速运转时采用分层注油模式。此时节气门为半开状态,空气由进气管进入汽缸撞在活塞顶部,由于活塞顶部制作成特殊的形状从而在火花塞附近形成期望中的涡流。当压缩过程接近尾声时,少量的燃油由喷射器喷出,形成可燃气体。这种分层注油方式可充分提高发动机的经济性,因为在转速较低、负荷较小时,除了火花塞周围需要形成浓度较高的油气混合物外,燃烧室的其它地方只需空气含量较高的混合气即可,而FSI使其与理想状态非常接近。当节气门完全开启,发动机高速运转时,大量空气高速进入汽缸形成较强涡流并与汽油均匀混合。从而促进燃油充分燃烧,提高发动机的动力输出。电脑不断的根据发动机的工作状况改变注油模式,始终保持最适宜的供油方式。燃油的充分利用不仅提高了燃油的利用效率和发动机的输出而且改善了排放。

 

缸内直喷技术与歧管喷射的本质区别

传统的发动机是在进气歧管中喷油再与空气形成混合气体,最后才进入到气缸内的。在此过程中,因为喷油嘴里燃烧室还有一定距离,微小的油粒会吸附在管道壁和气门上,而且汽油与空气的混合受进气气流和气门关闭影响较大;而缸内直喷是直接用高压喷油嘴将燃油喷射在气缸内,直接与空气混合。ECU可以根据吸入的空气量精确地控制燃油和喷射量和喷射时间,高压的燃油喷射系统可以是使油气的雾化和混合效率更加优异,可以使混合气体燃烧更加充分,在不增加排量的情况下提高功率和扭矩,从而降低油耗,提高发动机的动力性能。此外直喷技术还有通过汽油冷却抑制爆震、提高压缩比和容积效率等正面效果。

 关键部件组成
1、气缸盖
气缸盖是 GDI 发动机的关键部件,尤其是缸盖中燃烧室部分及气道结构对气流运动、混合气形成、火焰传播等起着至关重要的作用。
2、进气管
对于采用分层燃烧模式的GDI发动机,为了增加进气充量及增强进气滚流,不但对进气管的管径、管长、谐振腔的容积有特殊的要求,而且往往增加可变滚流和可变管长等结构。这样不但进气管结构变得复杂,制造成本较高,而且性能开发和匹配标定的难度也较大。而对于同时采用涡轮增压的缸内直喷发动机来说,由于进气增压的作用,在发动机大部分工况下进气管内均为正压,一般可达 0.2MPa 左右,对进气管的强度要求高,同时发动机本体或整车需要另外增设真空泵满足系统对真空度的需求。
3、高压油泵
GDI 发动机的喷油压力一般在 10-15MPa 左右,以保证燃油雾化质量及合适的贯穿距离。高压油泵一般由安装在进气凸轮轴上的 4 山凸轮驱动,升程在 2.5-4mm 之间,升程对高压油泵的选择十分重要,直接影响着冷起动时直喷系统的建压时间,升程需根据发动机性能需求、滚轮挺柱寿命、驱动凸轮型线及制造工艺等因素综合设计,一般 3.5mm 左右的升程即可满足使用需求。
4、喷油器
喷油器是直喷系统的核心部件,喷油器在燃烧室内的布置方式、喷嘴结构形式、油束的喷雾形状都直接影响燃油的雾化、油气混合及燃烧过程,最后影响发动机的性能。另外喷油器喷嘴置于燃烧室内,受燃油品质量影响较大。如果燃油的油品质不好,燃烧不充分,极易生成积碳并堵塞喷嘴,影响喷雾质量及喷油器自身的寿命。
5、活塞
缸内直喷发动机的活塞顶面形状对燃烧室内气流的运动及混合气的形成有很大的影响,因此缸内直喷发动机都将活塞作为关键部件进行重点的设计和开发。无论是壁面引导、气流引导还是喷射引导,都需要特殊的活塞顶面凹坑相适应,从而达到较为理想的油气混合效果,形成油气浓度的均质分布或梯度分布,保证燃烧的顺利进行。

 

上述是贤集网小编为大家讲解的的缸内直喷技术的优缺点、缸内直喷技术预防积碳方法、缸内直喷技术原理、缸内直喷技术与歧管喷射的本质区别及缸内直喷技术关键部件组成。现在,大家对缸内直喷技术有所了解了吧?不过,正如诸位所看到的现状,如今的汽车发动机领域,缸内直喷汽油发动机技术只不过是近几年才出现在人们面前,而那段历史也告诉了我们,这并不是一个新诞生的技术,说车企是在炒历史的冷饭也不为过。那缸内直喷技术为什么没能从诞生那天起就被一直延续下来呢?事实上,在奔驰将这种技术的发动机装配量产车后的20年里,众多厂商仍旧不懈地改进这种发动机,使其省油的优势被充分发挥,的确,缸内直喷技术可降低发动机的燃油消耗水平,但成本却不及同期逐步发展的采用歧管喷射的汽油发动机,而导致缸内直喷技术被尘封的一个重要原因是当时低廉的汽油价格。显然,省油的优势并不能在当时那个使用环境下凸显出来,因此,歧管喷射方式的汽油发动机开始大行其道。